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The space–time translation property of a stable particle is characterized by a time-like
Lorentz vector (E, Ek). We show in this contribution that unstable particles are, in addition,
characterized by a space-like Lorentz 4-vector of uncertainties, or spreads, (1E,

→
1k).

This is true for unstable states created in formation-, in production-, and in decay-
experiments. The space-like nature of the spread vector causes a nonzero momentum
spread to be present in all Lorentz frames so that there is no Lorentz frame in which the
unstable particle is entirely at rest. With the space-like spreadvector (1E,

→
1k) in addition

to the time-like (E, Ek), also the rotation property of an unstable particle is affected, and
unstable states have an uncertainty in their spin. This means neighboring spin states are
occupied in addition to the original spin. Experiments are discussed that show a principal
limitation of the accuracy of spin measurement from finite lifetimes. Wave functions for
unstable particles are discussed, and we show in the example of a short-lived spin-0 state
that the appearance of a spin neighbor in the amplitude is proportional to the inverse
lifetime.

KEY WORDS: unstable particle; momentum speed; spin spread; spin uncertainty;
space-like spread vector; spin neighbors; complex energy momentum.

1. INTRODUCTION

If one tries to describe stable and unstable particles with the same concepts,
then the instability would appear as an additional property of a particle, and a
stable one would represent a limiting case of an unstable one. This viewpoint
is the more desirable as stable and unstable states have often a similar behavior
like sharing the same SU(3)-multiplet or having comparable production cross
sections.
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2 Max-Planck-Institut f¨ur Physik, Werner-Heisenberg Institut, M¨unchen, Germany.
3 To whom correspondence should be addressed at Max-Planck-Institut f¨ur Physik, Werner-Heisenberg
Institut, München, Germany; e-mail: walter.blum@cern.ch.

1

0020-7748/04/0100-0001/0C© 2004 Plenum Publishing Corporation



P1: JQX

International Journal of Theoretical Physics [ijtp] pp1166-ijtp-484379 April 28, 2004 4:9 Style file version May 30th, 2002

2 Blum and Saller

Fig. 1. Formation of a resonancecbetween particles
a andb by external variation of the energy of (a, b).

Following this line, we do not define resonances4 as scattering processes
between stable particles, and we do not wish to refer to anydynamicproperty of
the unstable states or their decay products. In a previous paper (Blum and Saller,
2003) we have constructed relativistic wave functions in space and time of unstable
states which depend only on the Lorentz properties of the unstable state itself.

In this contribution we would like to emphasize this purely kinematic descrip-
tion of unstable states and show that their decay in time implies an uncertainty
of momentum and of spin. We hope to make it clear that it is the Lorentz group
which produces these effects—one might say that the spread1E in energy of
a state decaying in time cannot be separated from the other Lorentz parameters
and brings about a spread1k in momentum and a spread1S in the spin of the
decaying particle.

2. ENERGY–MOMENTUM PROPERTIES OF UNSTABLE STATES

Unstable states or resonances come into existence either “in formation” or
“in production” or “in a decay” of a more massive particle.

2.1. Unstable States Created in Formation

The resonance occurs as an intermediate state in the scattering of two stable
particlesa, b (Fig. 1).

a+ b→ c→ a+ b

Experimentally, the scattering energy is fixed for a number of events and then
systematically varied in steps. At every energy step the events are recorded and
the cross section is calculated.

4 In this paper we use the terms “unstable state,” “unstable particle,” “resonance,” or “short-lived
particle” as having the same meaning, and we use the term “stable particle” for a particle where the
inverse lifetime is zero or can be neglected in the given context.
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Typically the cross sectionσ goes through a maximum indicating the presence
of the resonance. The ensemble of all recorded scattering events represents this
unstable state. A well-known example is the scattering on hydrogen nuclei ofπ+

with laboratory momenta between 200 and 600 MeV/c peaking at 390 MeV/c and
thus indicating the presence of theN∗++(1230) unstable state.

The energy–momentum properties of such a state are characterized first by
(E, k) at the peak, wherek is the same as the momentum of the incoming particle
a atσpeakand

E =
√

k2+m2
a +mb,

and second by the width of the resonance, for example the momentum difference
1k where the cross section is half the peak value. The corresponding energy
difference is given by

1E = (√(k+1k)2+m2
a +mb

)− (√k2+m2
a +mb

)
. (1)

It is important to note that

1E ≤ 1k (2)

which can be seen when developing Eq. (1) w.r.t. the small quantity 2k1k/(k2+
m2

a) and neglecting terms (1k)2. The equal sign in Eq. (2) occurs forma = 0. The
property (2) is obviously independent of the particular choice of the definition of
the width or the central value. The definition of1k and1E given here is only up
to a factor and will be completed in subsection 2.4.

Under Lorentz transformations, (E, k) actually represents a 4-vector and
should be written (E, Ek). The same is true for (1E,1k)→ (1E,

→
1k). Equation (2)

actually refers to the magnitude of
→
1k and is

1E ≤ | →1k|. (3)

This is seen by repeating the steps from (1) to (2) using vectorsEk and
→
1k. In the

laboratory system
→
1k is parallel toEk, but not in every Lorentz system.

2.2. Unstable States Created in Production

The unstable state is made as one entity in a collision involving several parti-
cles, and then propagates force-free through space and time. Eventually it decays
according to a law of radioactivity. An example is theW particle as it was produced
in ppcollision when it was discovered (Fig. 2).

a+ b→ c+ d + e+ · · · (c→ x + y+ z+ · · ·) (4)
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Fig. 2. Production of a free unstable particle or
resonancec in coproduction with other particles.

In terms of the kinematic variables of particlec we may describe the most general
condition of its birth by the two-body reaction

a+ b→ c+ d (c→ x + y+ z+ · · ·) (5)

whered represents the energy–momentum sum of all the other particles produced
in the same reaction and assumed to be stable. After specifying the total energy

√
s,

the massesmc andmd we may calculate in the center of mass system of reaction
(5) the energyEc and momentumkc of particlec. The conservation laws determine
them to be

Ec =
√

s(1+ u− v)/2

kc =
√

s
√

(1+ u− v)2− 4u/2, (6)

with the abbreviationsu = m2
c/s andv = m2

d/s. If the massmc does not have a
sharp value but is statistically distributed around its central valuemc with variation
±0/2, the ensuing variations inEc andkc are in first-order of0/2,5

1E = ∂E

∂u

du

dm
0/2= √u0/2

1k = ∂k

∂u

du

dm
0/2= −1+ u− v√

(1+ u− v)2− 4u

√
u0/2 (7)

We note that the ratio1E/1k is always in the interval

−1≤ 1E/1k < 0 (8)

because the domain ofu and v is restricted to 0< u < 1, 0≤ v < 1, |√u| +
|√v| < 1.

Again, under Lorentz transformations (E, k) behaves as a 4-vector and should
be written (E, Ek), and the same is true for (1E,

→
1k). In the center of mass system

of reaction (5)
→
1k is parallel toEk, but not in every Lorentz frame.6 Just as in Eq. (3)

5 The indexc is omitted from here onwards.
6 More detailed arguments are presented in (Blum and Saller, 2003).
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Fig. 3. Production of a free unstable particle or resonance
c in the decay of a more massive particlea.

we have for the unstable state in production

1E ≤ | →1k|. (9)

2.3. Unstable States Created in Decay

The unstable state is created as one entity in the decay of a more massive
particle which is assumed to be metastable, i.e. its own natural mass width, being
nonzero because it decays spontaneously, can be neglected (Fig. 3).

a→ b+ c (c→ x + y+ z+ · · ·) (10)

Particleb represents the energy–momentum sum of all the other particles that are
produced in the same decay. They are assumed to be stable.

This creation of the unstable state in the decay of a more massive particle is
a special case of the creation “in production” treated in the previous subsection.
Identifying

√
s with the mass of the decayinga, and particled in Eq. (5) with

particleb in Eq. (10) we recuperate Eqs. (6) to (8). In particular we note that also
in the “creation in decay” the widths of energy and momentum of the unstable
state are related by

1E ≤ | →1k|. (11)

2.4. Common Properties of Unstable States

Independent of the way in which they were created, unstable states are char-
acterized by an energy-momentum “spread vector” (1E,

→
1k) which is space-like

because of the relations (3), (9), and (11). The time-like (E, Ek) and the space-like
(1E,

→
1k) give rise to two types of Lorentz frames which we give the following

names:

Central rest system:Ek = 0 (12)

Sharp-energy system:1E = 0 (13)
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The space-like property holds in all Lorentz frames, especially in the central
rest frame of the unstable state (variables denoted by∗). It is the same Lorentz
boost which transforms

(E, Ek)→ (m, 0) and (1E,
→
1k)→ (1E∗,

→
1k∗) = (0/2,

→
1k∗)

We may identify1E∗ with the width0/2 of the mass distribution. (This also
completes the definition of1E and1k in subsection 2.1 which was only given
up to a factor). The space-like nature of the spread vector requires

| →1k∗| ≥ 0/2 (14)

There is an unavoidable momentum uncertainty in the central rest frame of the
unstable particle.

One may visualize the energy-momentum spread vector as a correlation
between the deviations in energy and momentum from their central values
(E, Ek). A well-defined unstable state consists of an ensemble grouped around a
central (E, Ek). When measured in an experiment, this state produces many events
(Ei , Eki ) which follow a (highly specialized four-dimensional) probability distri-
bution around (E, Ek)—just like a stable state in a given angular momentum pro-
duces a distribution function of the corresponding angles. The correlation between
the individual deviationsEi − E, Eki − Ek may be written in the following form:

Ei − E

1E
= kx

i − kx

1kx
= ky

i − ky

1ky
= kz

i − kz

1kz
for all i (15)

We writeEk = (kx, ky, kz) etc., and it is understood that in Eq. (15) the deviations
in the numerators are zero when the corresponding denominator vanishes.

This suggests a graphical representation of unstable states as in Fig. 4.
In a diagramE vs. k ≡ |Ek| we draw three hyperbolas for a given massm and
width ±0/2, satisfyingE2− k2 = (m− 0/2)2, m2 and (m+ 0/2)2. The events
belonging to such a state at a givenE andk are points on a straight line inter-
secting the hyperbolam at E, k under some angle. We take this line to represent
the unstable state; being space-like, it can never be steeper than 45◦ (given equal
scales ofE andk).

The two 4-vectors have three invariants between them

(E, Ek)2 = m2 > 0

(E, Ek) · (1E,
→
1k) = m0/2

(1E,
→
1k)2 = −B2 < 0 (16)

The third invariant we have calledB2 (capital beta). The second one is best eval-
uated in the central rest frame.

The most general unstable state is thus characterized by 8 real numbers. These
can also be chosen as: 5 to specify the unstable state in its central rest frame, and
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Fig. 4. Representation of an unstable particle in the energy–
momentum plane by a straight line through the point (E, k) on the
hyperbola (m). The relation between1E,1k and0 is displayed.

3 for the Lorentz boost:(
m

0

)
,

(
0/2
→
1k∗

) Eβ→
(

E
Ek
)

,

(
1E
→
1k

)
(17)

A special case is given with six parameters when
→
1k is parallel toEk, and therefore

to Eβ in Eq. (17). If we further fix the value of| Eβ| such that we arrive in the
sharp-energy system (13), only five parameters are left.

Traditionally (Bell and Steinberger, 1966; Bohm, 1993; Bohm and Kaldass,
1999) one specified five parameters for the most general case, for example the
width of the rest mass distribution in addition to the central energy-momentum
(E, Ek) or, equivalently, two for the rest frame and three for the Lorentz boost:(

m

0

)
,

(
0/2

0

) Eβ→
(

E
Ek
)

,

(
1E
→
1k

)
(18)

This results in a time-like spread vector, incompatible, as shown above, with
energy-momentum conservation in the creation of the unstable state.

The two characterizations of resonances have a completely different behavior
under Lorentz transformations as illustrated in the two Figs. 5 and 6 and their
captions. The essential element is the nonzero

→
1k∗, the momentum uncertainty in

the central rest system. Of all the events in the mass distribution, only the center
part is at rest,7 the events in the high and low wings actually fly away in opposite

7 Hence the name given to the condition (12).
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Fig. 5. A resonance at three momenta k in the traditional
description. The lines to represent the resonance are con-
strained to point to the origin, the energy spread1E re-
mains proportional toE, and1k remains proportional to
k. In the rest system, the momentum spread1k is zero,
and the only spread is in the mass, namely±0/2. Once
m,0, k are given, the line which represents the resonance
is fixed.

directions with velocities of the order of± →1k∗/m which is at least as large as
±(0/2)/m. There is no Lorentz system in which the unstable state comes entirely
to rest.

2.5. Complex Energy–Momentum

In (Blum and Saller, 2003) we have constructed relativistic wave functions
in space and time for states characterized by (E, Ek) and (1E,

→
1k). They were

obtained from the harmonic expansion (Fourier expansion) of the Feynman prop-
agator, taking into account the correlations indicated by Eq. (15). A plane wave is
represented by

ψ(t, Ex) = e−i (E−i1E)t ei (Ek−i
→
1k)·Ex, (19)

a spherical wave where both
→
1k andEk are directed radially outward, by

ψ(t, r ) = e−i (E−i1E)t 1

r
ei (k−i1k)r . (20)

These wave functions hold in first-order of0/m and are not yet normalized. See
Section 3.3 further down for more details.

Fig. 6. A resonance created in production at three mo-
menta k in our description. The lines to represent the
resonance exhibit a slope which cannot be larger than
1 in magnitude. Oncem, 0, k are given, the slope of
the line which represents the resonance is not yet fixed
but one more element from the production process has to
be known. In the central rest system, the energy spread
is±0/2, and the momentum spread∓1k∗ is at least as
large. The element from production determines how much
larger it is.
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As an argument in Eq. (19) the energy-momentum spread appears as the
imaginary part of a complex 4-vector comprising all 8 real values. In lieu of
Eq. (17) one may also write(

m− i0/2

−i
→
1k∗

) Eβ→
(

E − i1E
Ek− i

→
1k

)
(21)

The boost parameter is still the real 3-vector it was before although the unstable
particle “travels with a complex velocity” which means that the three complex
momentum components, divided by the complex energy component, result in a
“velocity” that cannot be real.

3. THE SPIN OF AN UNSTABLE STATE

The situation in the central rest frame, as it was described in the paragraph
of Section 2.4 belonging to Eq. (14), creates complications for the definition of
spin: The intrinsic spin of the field in question is modified by the presence of
additional angular momentum created by the momentum uncertainty1k∗ in the
occupied space. Before we proceed to a more formal treatment we wish to present
four direct arguments why the angular momentum of any short-lived state cannot
be infinitely sharp but acquires an uncertainty which we call “angular momentum
spread” or “spin spread.”

3.1. Four Direct Arguments in Favor of an Angular Momentum Spread
of Short-Lived Particles

3.1.1. The Spin of a Short-Lived State Can Only be Measured
With a Limited Accuracy

Imagine an experiment in which the amountJ of spin angular momentum
of a short-lived state is measured using the method of nuclear spin resonance in a
magnetic fieldB. The precession frequencyω which is observed for nonzero spin
determinesJ, if the magnetic momentµ is known (Fig. 7), then

J = µB

ω
.

Let the excited state have energyE, above the ground levelE0, width0 and mean
life τ = h/0. Now the frequency can only be measured during the lifetime of the
state and is therefore limited to the accuracy1ω ≈ 1/τ , so that the accuracy of
the measurement ofJ is given by

1J ≈ 1ω

ω2
µB ≈ 1

τ

J2

µB
,

which becomes smallest for the largest value ofµB, and a smallJ.
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Fig. 7. Principle of a nuclear spin measurement by extraction
of the precession frequency.

In this experiment the interaction energy between the apparatus and the ex-
cited state is represented byµB; it cannot be made as large as the value ofE − E0

if the state to be measured should remain distinguished from the ground state.
Therefore we have to keepµB < E − E0. Assigning the lowest integer non-zero
value toJ, J = h, we arrive at an uncertainty that cannot be smaller than

1J ≈ 1

τ

h2

E − E0
= h0

E − E0

1J

h
≈ 0

E − E0
(22)

3.1.2. The Angular Momentum Component of a Short-Lived State Can Only
be Measured With a Limited Accuracy

In a Stern–Gerlach experiment (Fig. 8) let a beam of short-lived states of
energyE be created from a beam of atoms that are in the ground state with energy

Fig. 8. Principle of a Stern–Gerlach experiment for the mea-
surement of the spin component in the direction of the field
inhomogeneity.
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E0. In the magnetic fieldB the presence of an angular momentum componentmh in
the direction of the field inhomogeneity changes the energy to beE′ = E − µB,
whereµ is the magnetic moment of the state. Knowingµ, one measuresm by
recording the energy difference; thenm is given by

m= E′ − E

µB
.

The energy differenceE′ − E is determined from a measurement of the displace-
ment of the beam in the inhomogeneous field.

It is well known that a minimal length of time,T , is required to measure
the energy differenceE′ − E; for shorter times the beam would still overlap the
reference beam.

T >
h

E′ − E
.

The unstable state can only be observed during its lifetime; on the average we must
involve the mean lifetimeτ . Therefore there is a limit to the accuracy1(E − E′)
with which the value ofE′ − E can be determined:

1(E′ − E) >
h

τ

1m= 1(E − E′)
µB

>
h

τµB
.

The accuracy1m becomes better ifµB is increased. But again,B cannot be
made arbitrarily large. IfµB were made as large as the energy differenceE −
E0, the experiment would lose its meaning as the stateE would no longer be
distinguished fromE0. Therefore, the uncertainty1m with which the angular
momentum component can be measured has a lower limit

1m >
h

τ (E − E0)
= 0

E − E0
, (23)

where0 = h/τ is the width of the unstable state.

3.1.3. A Short-Lived State Cannot Have a Sharp Orbital Angular Momentum

In a two-body-bound state the angleφ of rotational motion, and the angular
momentumL of the state are two variables that are conjugate to each other, and
the uncertainty principle requires that the two uncertainties1φ and1L are related
by1φ1L > h. Whereas for a stable state the uncertainty1φ is arbitrarily large,
this is different for a short-lived state becauseφ(t), being essentially proportional
to the timet , must be limited in the same way as the lifetime is. A state with a
finite mean lifeτ has its lifetime distributed according to a probability distribution
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(1/τ ) exp(−t/τ ). The variance of the lifetime is therefore equal to

(1t)2 = [t2] − [t ]2 = τ 2 = h2

02
.

If we useαeff as the effective constant of proportionality, so that
φ(t) ≈ αefft

then
1φ ≈ αeffτ

and1L is bounded from below at approximately

1L ≈ h

αeffτ
.

The physical meaning ofαeff is the angular velocity, which in the classical problem
is related to the angular momentum and the kinetic energy by

L ≈ Mαeffr
2

Ekin ≈ α2
effr

2M/2

wherer is the sutiably averaged radius andM is the mass of the two body problem.
Thereforeαeff is of the order ofEkin/L, and the lower bound for1L can also be
written as

1L ≈ h

τ

L

2Ekin

1L

L
≈ 0

2Ekin
(24)

3.1.4. The Spin-1 W Boson, Away From its Mass Shell Can Assume Spin 0

Consider the decay of the spin-0 pion into a spin-0 lepton pair final state

π+ → µ+ν

In the language of the Standard Model (Fig. 9) the quark–antiquark pair couples
to aW+ boson which couples in turn to the final state, which has spin 0.

Fig. 9. Pion decay via an intermediate W-boson in the Standard Model.
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The angular momentum at each vertex is conserved—theW+ boson has spin
0 for the very short time of its existence which is of the order of

T ≈ 1

MW

The natural lifetime of theW+ isτW À T . If duringT the spin can be away from its
on-shell value by 1 unit, one may expect it to be away during its natural lifetime by

1S≈ T

τW
≈ 0W

MW

3.2. Neighboring Spins and Suitable Representations

From a group theoretical point of view angular momentum eigenvalues are
discrete numbers (integer or half-integer) because the underlying rotation group
is compact. Therefore a non-zero spin spread can only mean the occupation of
neighboring states in addition to the main state. How many neighboring states do we
expect? For the moment we do not know and take the minimum that would describe
the effect, i.e., in addition to the originalJ, we useJ + 1 and (if J ≥ 1) J − 1.
Any spin characterization of short-lived particles should involve representations
of the rotation group that have the required number of dimensions so that the total
spin state can be accommodated as a vector in the representation space.

In the paper mentioned above (Blum and Saller, 2003) we have described
relativistically compatible spin wave functions by embedding spinning particles
into a Lorentz transformation compatible field. Here we can only briefly summarize
some relevant results.

For stable states with integer spin, the general procedure starts with em-
bedding the spin-0 particles with SU(2) representationD0 in the Lorentz group
representationD[0|0] ∼= D0, then the spin-1 representation of the rotation group in
the Lorentz group representationD[ 1

2 | 12 ] ∼= D1⊕ D0.
For unstable states we chose the next higher Lorentz group representation so

that D0 is embedded inD[ 1
2 | 12 ] ∼= D1⊕ D0 and D1 in D[1|1] ∼= D2⊕ D1⊕ D0.

Whereas this embedding is not unique, our choice is for the two (left and right
spin) indices to be “as close as possible to each other.”

3.3. Constructing Wave Functions for Unstable States

3.3.1. Stable State, Spin Ignored

For comparison, a stable state with a given energyE is obtained from har-
monic analysis of the propagator

ψ(t, r ) = −
∫

d4q

2π2

1

q2+ io−m2
e−iqxδ(q0− E) = e−i Et eikr

r
(25)
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Here k = √E2−m2, the Diracδ-distribution is used to pick the given energy
from the sea of all possible energies. The outgoing spherical wave is obtained
by using a suitable prescription of the integration path in the complex|Eq|-
plane.

3.3.2. Unstable State, Spin Ignored

For an unstable state, two modifications are introduced: Firstly, the distribu-
tional “io” in Eq. (25) is replaced by the non-zero invariant width “im0.” Secondly,
the effect of the correlations as in (15) must be taken into account. For the special
case of the radial wave function (

→
1k andEk both radially outward), Eq. (15) takes

the form

Ei − E

1E
= ki − k

1k
(26)

In the integral (25) the Diracδ-distributionδ(q0− E) is replaced by one which
picks the correlation (26) instead of the fixed energy

δ(q0− E)→ δ

(
1k√

(1k)2− (1E)2
(q0− E)− 1E√

(1k)2− (1E)2
(|Eq| − k)

)
def= δ(C(q0− E)− S(|Eq| − k)) (27)

The Lorentz-invariant square root guarantees that for1E = 0 the twoδ-distri-
butions are the same.

For an unstable spherical outgoing wave, characterized by (E, k) and (1E,
1k) the wave function takes the form

ψ(t, r ) = −
∫

d4q

2π2

1

q2+ im0 −m2
e−iqxδ(C(q0− E)− S(|Eq| − k)), (28)

which integrates (Blum and Saller, 2003) to

ψ(t, r ) = e−i (E−i1E)t ei (k−i1k)r

r
(29)

in first-order of0/m.

3.3.3. Stable State, Spin 0 With Neighbor

The new degrees of freedom are introduced by choosing the Lorentz repre-
sentationD[ 1

2 | 12 ] ∼= D1⊕ D0. Starting from Eq. (25) we introduce the spin-Lorentz



P1: JQX

International Journal of Theoretical Physics [ijtp] pp1166-ijtp-484379 April 28, 2004 4:9 Style file version May 30th, 2002

Energy-Momentum Properties and the Spin of Short-Lived Particles 15

transmutator3 j
k applicable for the vector representationsD[ 1

2 | 12 ] , the vector
representations of the boost

3
( q

m

) j

k
= 1

m

(
q0

Eq
Eq

δabm+ qaqb

q0+m

)
(30)

The wave function has four components, one for the main spin (j = 0), and three
for the spin neighbors (j = 1, 2, 3). The wave function is

Aj (t, r ) = −
∫

d4q

2π2
3
( q

m

) j

0

1

q2+ io−m2
e−iqxδ(q0− E) (31)

=
(

i
m∂t

−Exr i
m∂r

)
e−i Et eikr

r
=
(

i
m∂t

−Exr i
m∂r

)
e−i Et kh+0 (kr )

= e−i Et

(
E
mkh+0 (kr )
Ex
r i k

mkh+1 (kr )

)
(32)

Here the two Hankel functionsh+l (ρ) appear which are associated with angu-
lar momentuml = 0 and l = 1 (Messiah, 1959)h+0 (ρ) ≡ eiρ/ρ and h+1 (ρ) =
−(d/dρ)h+0 (ρ). In the central rest system, Eq. (32) is

Aj (t, r )
rs=


1
0̄
0
0

 e−imt 1

r
+ · · · (33)

(We are interested in the leading term proportional 1/r ).
Let the spin function in front of the space–time-dependent part of the total

wave function be calledχ . It has gone from a scalar in Eq. (25) to a four-component
vector in Eq. (33)

χ J= 0
stable

1→ χ J= 0+1
stable

=
1

0̄
0

 (34)

There is no new information in the additional three components.
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3.3.4. Unstable State, Spin 0 With Neighbor

For this case we have to combine Eqs. (28) and (31). The wave function
is

Aj
0(t, r ) = −

∫
d4q

2π2
3
( q

m

) j

0

1

q2+ im0 −m2
e−iqx

× δ(C(q0− E)− S(|Eq| − k)) (35)

=
(

i
m∂t

−Exr i
m∂r

)
e−i (E−i1E)t ei (k−i1k)r

r
(36)

=
(

E−i1E
m kh+0 (kr )

i Exr
k
m

[
kh+1 (kr )−1kh+0 (kr )

]) e−i (E−i1E)t e1kr (37)

In comparison between Eqs. (37) and (32), new components proportional to
1E and1k have appeared in the unstable case. When going to the central rest
frame (E = m, k = 0) this may be expressed by the spin function as

χ J= 0+1
unstable

= χ J= 0+1
stable

+
(
−i 0

2m

−i Exr
1k∗
m

)
(38)

As the spin-0 particle has become unstable, the spin fucntion has acquired a spin-1
component in the new degrees of freedom, proportional to1k∗.

3.3.5. Spin Spread as R.M.S. Variation Over Discrete Spins

To have a quantitative measure of the variation of the discrete spin we define
a “spin spread”1S as the root-mean-square variation of the spin intensity of the
short-lived state. The intensity in the new spin-1 component in (38), mixed into
the original spin-0 state is equal to(

1k∗

m

)2

,

whereas the intensity in the original spin-0 state is 1 (02/m2 neglected against 1).
To first-order of0/m we find for the case at hand

1S= |1k∗|
m
≥ 0

2m
(39)
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3.4. Comparison With the Conventional Treatment of Spin for Resonances

Traditionally there is only one discrete number (integer or half-integer) for
the spin of a resonance, and there is no spin spread, even if the resonance is quite
wide, i.e. even if it has a fairly large value of0/m.

3.4.1. Partial Wave Method in Formation

In a formation experiment with hadrons, Section 2.1, one would measure the
distribution of the scattering angleθ as a function of the incoming momentum
k. One would analyze the angular distribution using the method of partial waves
(Bohm, 1993; Roman, 1965) as follows.

The amplitude f (θ ) for elastic scattering in the center of mass system is
decomposed into partial waves of angular momentuml by the series

f (θ ) = 1

p

∞∑
l=0

(2l + 1)
e2i δl − 1

2i
Pl (cosθ ) (40)

wherePl (cosθ ) is the Legendre polynomial of degreel andp the c.m. momentum
uniquely related to the total energyEcm in the c.m.,δl is the phase shift of the
partial wavel and depends on one variable, sayp or Ecm. The differential cross
section and with it the angular distribution are given by

dσ

dÄ
= | f (θ )|2. (41)

It is possible to experimentally determine theδl ’s as functions ofEcm up to some
lmax(l = 0, 1,. . . lmax) which is given by the finite range of forces between the
hadrons. (The partial wave method can be generalized to the case of inelastic
scattering by introducing complex phase shiftsηl = δl + i γl where theγ ’s describe
the degree of inelaticity in the angular momentuml (Roman, 1965). The essential
element in the traditional method of giving a resonance only one discrete number
for angular momentum can be discussed with realδl ’s.)

Assuming that background plays no important rˆole, the intermediate state of
Fig. 1 is identified as being a resonance in the partial wavel when one of the
δl (Ecm) passes through the value of 90◦ at someEcm = Ecm

res. The width of the
resonance is related to the speeddδl/d Ecm with which the phase passes through
90◦ as the center of mass energy is varied. This interpretation of the resonance
phenomenon is in the direct line of a development from mechanical or electrody-
namical forced oscillators with damping, over optical resonances, to resonances
occurring in potential scattering of the Schr¨odinger theory. The method is well
established also in the identification of the angular momentum of nuclear states.
If it is battle tested that well—then what is the problem?
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The problem comes in two steps: (1) A relativistic description of a resonance
requires that the phase is a function not only of the energy but also of the momentum
of the resonance. (2) Traditionally it was possible to eliminate the momentum as
a second variable by going to the rest frame where it was zero; this is no longer
possible due to the momentum uncertainty1k∗ which is present in the central
rest frame, and which is at least as large as0/2. In fact, a partial wave resonance
interpretation implicitly assumes Eq. (18) to be valid.

3.4.2. Decay Angular Distribution Method in Production

A proper description of the spin of a resonance is intimately related to our
insistence that the resonance must be describable in any one but only one chosen
Lorentz frame.

This is also elucidated in the following situation. Imagine aρ0-resonance
(m= 770 MeV, 0 = 150 MeV) which is known to predominantly decay into
π+π−. Let it be produced in well-defined conditions in a pure state (e.g., in
π−p→ ρ0n (ρ0→ π+π−) at a fixed laboratory momentum of the incomingπ−

on a stationary polarized target, in the forward direction). With respect to its mass,
theρ0-meson consists of the ensemble of all the possibilities to manifest itself with
some mass value distributed around the central valuem.

In the central rest system of theρ0, the two decay particles of the central
mass are back-to-back; let the direction of theπ+ be called p̂. A pure spin-1
property of theρ-meson requires that the angular wave functionf ( p̂) be a vector
representation of the rotation group, e.g. a linear combination of the spherical
harmonics forl = 1.

f ( p̂) = α−1Y−1
1 ( p̂)+ α0Y0

1 ( p̂)+ α+1Y+1
1 ( p̂) (42)

Staying in the same central rest system, the decay pattern is no longer back-to-back
at mass values different from the central massm, because the additional momentum
present in the central rest frame is added to the momenta of the decay particles.
The original directionp̂ is shifted the more one goes away fromm (cf. Fig. 10).

p̂→ p̂′.

Fig. 10. Decay patterns ofρ → π+π− belonging to the ensem-
ble of masses, measured in the central rest frame, (a) atm− 0/2,
(b) at m, (c) at m+ 0/2. The momentum uncertainty1k∗ is
thought to be along the horizontal line.
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Fig. 11. Decay patterns ofρ → π+π− belonging to the en-
semble of masses, measured in three different Lorentz frames:
(a) the one atm− 0/2, (b) the one atm, (c) the one at
m+ 0/2; they are identical.

Directions p̂′ no longer follow a relation like (42), and other spherical harmonics
(l 6= 1) come in, thus producing spin neighbors.

Traditionally one did not stay in the same system but went to a different
Lorentz frame for every mass value of the ensemble, thus causing the decay prod-
ucts to stay back-to-back, and keeping the relation (42) valid over the entire mass
range of the resonance (see Fig. 11). The Lorentz frame was selected event by event,
according to which value of the mass was accidentally realized. This procedure
was of course not “wrong,” but it required for the description of the resonance a
continuous family of Lorentz frames, and it did not allow to describe the resonance
in one unique Lorentz frame.

4. CONCLUSIONS

We have shown that a relativistically compatible definition of unstable states
is possible without referring to constituents or the dynamical behavior of decay
products. Questions as to the mathematical foundations remain open. (e.g., the
conventional Hilbert space is not a suitable framework as it does not allow for
decaying states (Bohm, 1993).

The appearance of non-zero uncertainties (spreads) of energy, momentum
and spin requires no complex boost parameter for the Lorentz group; this is in
harmony with the procedure of Bohm and Kaldass (1999). On the other hand, the
non-zero

→
1k∗, the momentum uncertainty in the central rest frame of the decaying

particle, appears to be the key to an understanding of the unstable states. It is the
reason for the existence of two species of Lorentz frames, the central rest frames
(Ek = 0) and the sharp-energy systems (1E = 0).
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